
Linear-Complexity Exponentially-Consistent Tests
for Universal Outlying Sequence Detection

Yuheng Bu Shaofeng Zou Venugopal V. Veeravalli
University of Illinois at Urbana-Champaign

Email: bu3@illinois.edu, szou3@illinois.edu, vvv@illinois.edu

Abstract—We study a universal outlying sequence detection
problem, in which there are M sequences of samples out of
which a small subset of outliers need to be detected. A sequence is
considered as an outlier if the observations therein are generated
by a distribution different from those generating the observations
in the majority of the sequences. In the universal setting, the
goal is to identify all the outliers without any knowledge about
the underlying generating distributions. In prior work, this
problem was studied as a universal hypothesis testing problem,
and a generalized likelihood (GL) test was constructed and its
asymptotic performance characterized. In this paper, we propose
a different class of tests for this problem based on distribution
clustering. Such tests are shown to be exponentially consistent and
their time complexity is linear in the total number of sequences,
in contrast with the GL test, which has time complexity that
is exponential in the number of outliers. Furthermore, our tests
based on clustering are applicable to more general scenarios. For
example, when both the typical and outlier distributions form
clusters, the clustering based test is exponentially consistent, but
the GL test is not even applicable.

I. INTRODUCTION

In this paper, we study a universal outlying sequence detec-

tion problem, where there are M sequences of samples out of

which a small subset are outliers and need to be detected. Each

sequence consists of independent and identically distributed

(i.i.d.) discrete observations. It is assumed that the observations

in the majority of the sequences are distributed according to

typical distributions. A sequence is considered as an outlier if

its distribution is different from the typical distributions. We

are interested in the universal setting of the problem, where

nothing is known about the outlier and typical distributions,

except that the outlier distributions are different from the

typical distributions. The goal is to design a test, which does

not depend on the typical and outlier distributions, to best

discern all the outliers.

Outlying sequence detection finds possible applications in

many domains (e.g., [1]–[3]). The problem of outlying se-

quence detection was studied as a universal outlier hypothesis

testing problem for discrete observations in [4] and continuous

observations in [5]. In [4], the exponential consistency of

the generalized likelihood (GL) test under various universal

settings was established. When there are a known number of

identically distributed outliers, the GL test was shown to be

asymptotically optimal as M goes to infinity.

However, the high time complexity, which is exponential in

the number of outliers T , is a major drawback of the GL test

when M and T are large. In this paper, we propose tests based

on distribution clustering [6] for various scenarios. Such tests

are shown to be exponentially consistent, with time complexity

that is linear in M and independent of T .

The intuition for the clustering based test is that the typical

distributions are usually closer to each other than the outlier

distributions. Therefore, the typical distributions (and also

possibly the outlier distributions) will naturally form a cluster.

This implies that the outlying sequence detection problem is

equivalent to clustering the distributions using KL divergence

as the distance metric (see also [7]).

We note that our problem is different from the classical

distribution clustering problem [6], [8]–[10]. In the distribution

clustering problem, the goal is to find the cluster structure

with the lowest cost (sum of distance functions of each point

in the cluster to the center). However, for our problem, we

are given a sequence of samples from each distribution rather

than the actual underlying distribution itself. Therefore, we

are interested in the statistical performance, i.e., the error

probability, of our test. Previous studies on approximation

algorithms for distribution clustering [8]–[10] only show that

the cost corresponding to the cluster structure returned by the

approximation is within a logK factor of the minimal cost,

where K is the number of clusters. And there are no results

showing that the approximation algorithms will converge to

the minimal cost. Therefore, their results cannot be directly

applied to our problem to provide a performance guarantee in

a probabilistic sense.

Our contributions in this paper are as follows: (1) in

all cases where the GL test is exponentially consistent, we

construct tests based on clustering that are also exponentially

consistent and have time complexity linear in M ; (2) we

show that the tests based on clustering are applicable to more

general scenarios. For example, when both the typical and

outlier distributions form clusters, the clustering based test is

exponentially consistent, but the GL test is not even applicable.

II. PROBLEM MODEL

Throughout the paper, all distributions are defined on the

finite set Y , and P(Y) denotes the set of all probability mass

functions (pmfs) on Y .

We consider an outlying sequence detection problem, where

there are in total M ≥ 3 data sequences denoted by Y (i)

for i = 1, . . . ,M . Each data sequence Y (i) consists of n
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i.i.d. samples Y
(i)
1 , . . . , Y

(i)
n . The majority of the sequences

are distributed according to typical distributions except for

a subset S outlying sequences, where S ⊂ {1, . . . ,M} and

1 ≤ |S| = T < M
2 . Each typical sequence j is distributed

according to a typical distribution πj ∈ P(Y), j /∈ S.

Each outlying sequence i is distributed according to an outlier

distribution μi ∈ P(Y), i ∈ S. Nothing is known about μi

and πj except that μi �= πj , ∀i ∈ S, j /∈ S, S ⊂ {1, . . . ,M},

and all of them have full support over a finite alphabet Y .

We first study the case that all typical distributions are

identical, i.e., πj = π, ∀j /∈ S.

We then study the case where both the outlier distributions

{μi}i∈S and the typical distributions {πj}j /∈S are distinct.

Moreover, the typical distributions and the outlier distributions

form two clusters. More specifically,

max
i,j∈S

D(μi‖μj) < min
i∈S,j /∈S

{D(μi‖πj), D(πj‖μi)},
max
i,j /∈S

D(πi‖πj) < min
i∈S,j /∈S

{D(μi‖πj), D(πj‖μi)}. (1)

This condition means that the divergence within the same

cluster is less than the divergence between different clusters.

We use the notation y(i) = (y
(i)
1 , . . . , y

(i)
n ), where y

(i)
k ∈ Y

denotes the k-th observation of the i-th sequence. Let S be the

set comprising all possible outlier subsets. For the hypothesis

corresponding to an outlier subset S ∈ S , the joint distribution

of all the observations is given by

pS(y
Mn) = LS

(
yMn, {μi}i∈S , {πj}j /∈S

)

=
n∏

k=1

{∏
i∈S

μi(y
(i)
k )

∏
j /∈S

πj(y
(j)
k )

}
, (2)

where LS

(
yMn, {μi}i∈S , {πj}j /∈S

)
denotes the likelihood.

Our goal is to build distribution-free tests to detect the

outlying sequences. The test can be captured by a universal

rule δ : YMn → S, which must not depend on {μi}Mi=1 and

{πj}Mj=1.

The performance of a universal test is gauged by the

maximal probability of error, which is defined as

e
(
δ, {μi}Mi=1, {πj}Mj=1

)
� max

S∈S

∑
yMn:δ(yMn)�=S

pS(y
Mn),

and the corresponding error exponent is defined as

α
(
δ, {μi}Mi=1, {πj}Mj=1

)
� lim

n→∞
− 1

n
log e

(
δ, {μi}Mi=1, {πj}Mj=1

)
.

A universal test δ is universally exponentially consistent if

α
(
δ, {μi}Mi=1, {πj}Mj=1

)
> 0, for μi �= πj , i, j = 1, . . . ,M .

III. GENERALIZED LIKELIHOOD TEST

In this section, we consider the case where the typical

distributions are identical, i.e., πj = π, ∀j /∈ S. Let γi denote

the empirical distribution of y(i), and is defined as γi(y) �
1
m

∣∣{k = 1, . . . ,m : yk = y}∣∣, for each y ∈ Y . Let D(p‖q) and

B(p, q) denote the KL divergence and Bhattacharyya distance,

which are defined as D(p‖q) �
∑

y∈Y p(y) log
(
p(y)/q(y)

)
and B(p, q) � − log(

∑
y∈Y p(y)1/2q(y)1/2), respectively. In

the universal setting with π and {μi}i∈S unknown, conditioned

on the set of outliers being S ∈ S , we compute the generalized

likelihood of yMn by replacing π and {μi}i∈S in (2) with their

maximum likelihood estimates (MLEs) {μ̂i}i∈S , and π̂S , as

p̂univS = L̂S(y
Mn, {μ̂i}i∈S , π̂S). (3)

The GL test then selects the hypothesis under which the GL

is maximized (ties are broken arbitrarily), i.e.,

δGL(y
Mn) = argmax

S∈S
p̂univS . (4)

A. Known Number of Outliers

We first consider the case in which the number of outliers,

denoted by T ≥ 1, is known at the outset, i.e., S = {S : S ⊂
{1, . . . ,M}, |S| = T}. We compute the generalized likelihood

of yMn by replacing the μi, i ∈ S and π in (2) with their

MLEs: μ̂i � γi, and π̂S �
∑

j /∈S γj

M−T . Then the GL test in (4)

is equivalent to

δGL(y
Mn) = argmin

S⊂S

∑
j /∈S

D
(
γj‖

∑
j /∈S γj

M − T

)
. (5)

Proposition 1. [4] When the number of outliers is known,
the GL test in (5) is universally exponentially consistent. As
M → ∞, the achievable error exponent converges as

lim
M→∞

α
(
δGL, {μi}Mi=1, π

)
= lim

M→∞
min

i=1,...,M
2B(μi, π).

When all outlier sequences are identically distributed, i.e.,
μi = μ �= π, i = 1, . . . ,M , the achievable error exponent
of the GL test in (5) converges to the optimal one achievable
when both μ and π are known.

Note that the number of hypotheses in the test (5) is
(
M
T

)
.

Thus, exhaustive search over all possible hypotheses has time

complexity that is polynomial in M and exponential in T .

B. Unknown Number of Identical Outliers

In this subsection, we consider the case where the number

of outliers is unknown, i.e., S = {S : S ⊂ {1, . . . ,M}, 1 ≤
|S| < M/2}. Moreover, we assume that the outliers are

identically distributed.

By replacing the μi, i ∈ S, and π in (2) with their MLEs

μ̂S = μ̂i �
∑

i∈S γi

|S| , and π̂S �
∑

j /∈S γj

M−|S| , the GL test in (4) is

equivalent to

δGL(y
Mn) = argmin

S⊂S

∑
j /∈S

D
(
γj‖

∑
j /∈S γj

M − |S|
)

+
∑
i∈S

D
(
γi‖

∑
i∈S γi

|S|
)
. (6)

Proposition 2. [4] When the number of the outliers is
unknown, 1 ≤ |S| < M

2 , and all the outlier sequences
are identically distributed, the GL test in (6) is universally
exponentially consistent.

Note that the number of hypotheses in the GL test (6) is∑�M/2�
i=1

(
M
i

)
, which is exponential in M . The complexity of

the test in (6) is even larger than that of the test in (5).
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We also note that when the number of the outliers is un-

known and outliers can be distinctly distributed, there cannot

exist a universally exponentially consistent test [4].

IV. PROBLEM REFORMULATION AS DISTRIBUTION

CLUSTERING

In order to construct low time complexity algorithms with-

out sacrificing much in performance, we reformulate the

outlying sequence detection problem as a distribution clus-

tering problem. Although the distribution clustering problem

is known to be NP-hard [8], there exists many approximation

approaches, e.g. K-means algorithm [11], with time complex-

ity that is linear in M and linear in the number of clusters.

The typical distributions are closer to each other than to

any of the outlier distributions, and the same also holds for

the outlier distributions when the outliers form a cluster.

The outliers can be identified by clustering the empirical

distributions into two clusters, where the cluster with more

members contains all typical sequences, and the other cluster

contains outliers.

More specifically, if we define the following cost function

for distribution clustering

TC =

K∑
k=1

∑
i∈Ck

D(γi‖ck), (7)

where K is the number of clusters, c = {c1, . . . , cK} are the

clustering centers, and disjoint partitions C = {C1, . . . , CK}
denote the cluster assignment. As shown in [6, Proposition

1], for a given cluster assignment {Ck}Kk=1, the total cost is

minimized when ck =
∑

i∈Ck pi

|Ck| , which is the average of the

distributions within the k-th cluster.

Algorithm 1 K-means distribution clustering algorithm

Input: M distributions p1,. . . , pM defined on Y , number

of clusters K.

Output: partition set {Ck}Kk=1.

Initialization: {ck}Kk=1 (Specified in Algorithm 2 and 3)

Method:
while not convergence do

{Assignment Step}
Set Ck ← ∅, 1 ≤ k ≤ K
for i = 1 to M do

Ck ← Ck ∪ {pi}
where k = argmink D(pi‖ck)

end for
{Re-estimation Step}
for k = 1 to K do

ck ←
∑

i∈Ck pi

|Ck|
end for

end while
Return {Ck}Kk=1

Then the GL test in (6) can be interpreted as a distribution

clustering algorithm with K = 2. The first term in (6)

corresponds to the cost in the typical cluster and the second

term is the cost within the outlier cluster. The GL test decides

on the cluster assignment that minimizes the cost among all

possible cluster assignments.

For the case where the typical distributions are identically

distributed, but outliers are not, it suffices to only cluster the

empirical distributions of all typical sequences as shown in the

GL test (5).

Thus, both the GL test in (5) and (6) are equivalent to

empirical distribution clustering on the probability simplex

using KL divergence as the distance metric.

While the distribution clustering problem itself is known to

be NP-hard [8], there are many existing approximation algo-

rithms with low complexity [11]. Here, we introduce the K-

means distribution clustering algorithm in [6]. For Algorithm

1, [6] only shows that the cost function in (7) is monotonically

decreasing and it terminates in a finite number of steps at a

partition that is locally optimal.

V. CLUSTERING BASED TESTS

In this section, we propose linear complexity tests based

on the K-means clustering algorithm. We show in all cases

where the GL test is exponentially consistent, the clustering

based tests using KL divergence as the distance metric are also

exponentially consistent, while only taking linear time in M .

For the case that the typical and outlier distributions form two

clusters, we show that the clustering based test is exponentially

consistent, but the GL test is not even applicable.

A. Known Number of Outliers

We first consider the case where the number of outliers

T is known and the typical distributions π are identical.

Algorithm 1 cannot be directly applied here, because the

outlier distributions may not form a cluster and Algorithm

1 does not employ the knowledge of T . Motivated by the test

in (5), we design Algorithm 2.

Algorithm 2 Clustering with known number of outliers

Input: γ1,. . . , γM , number of the outliers T .

Output: A set of outliers S.

Initialization:
Choose one distribution γ(0) from γ1,. . . , γM arbitrarily

for i = 1 to M do
Compute D(γi‖γ(0))

end for
π̂ ← γ∗

where D(γ∗‖γ(0)) is the �M
2 �-th element among all

D(γi‖γ(0))
Method:
while not convergence do

{Assignment Step}
Set S ← S∗,

where S∗ = argmaxS′∈S,|S′|=T

∑
i∈S′ D(γi‖π̂)

{Re-estimation Step}
π̂ ←

∑
j /∈S γj

M−T
end while
Return S
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The novelty of this algorithm lies in the construction of

the first clustering center for the typical distribution and an

iterative approach based on K-means to update it.

Using the initialization in Algorithm 2, γ∗ is generated from

π with high probability. The intuition behind this is that: if

γ(0) is generated from typical distribution π, then only |S| <
M
2 empirical distributions which are generated from μi are

far from γ(0); if γ(0) is generated from some μi, then there

are at least M − |S| > M
2 of D(γi‖γ(0)) concentrating at

D(π‖μi). Thus the �M
2 �-th element is close to D(π‖μi), and

γ∗ is generated from π with high probability.

Let δc2 denote the test described in Algorithm 2, and δ
(�)
c2

denote the test that runs � number of K-means iterations in

Algorithm 2.

In the following theorem, we show that the test δ
(1)
c2 with

only one iteration step is universally exponentially consistent.

Theorem 1. For each M ≥ 3, when the number of outliers
T is known, the test δ(1)c2 , which runs one K-means iteration
in Algorithm 2 is universally exponentially consistent. The
achievable error exponent of δ(1)c2 can be upper bounded by

α
(
δ
(1)
c2 , {μi}Mi=1, π

)
< lim

M→∞
min

i=1,...,M
2B(μi, π). (8)

Furthermore, the time complexity of the test δ(1)c2 is O(M).

Proof sketch: Errors made by δ
(1)
c2 in the initialization

step can be decomposed into two scenarios. If γ(0) is generated

from typical distribution π, an error occurs when π̂ is actually

generated from an outlier distribution. The probability of this

event can be upper bounded by the probability of the following

event E1 = {D(γi‖γj1) < D(γj2‖γj1), ∃i ∈ S, ∃ j1, j2 /∈
S}. If γ(0) is generated from an outlier distribution, the

error probability can be upper bounded by the probability

of the following event E2 = {D(γj1‖γi1) < D(γi2‖γi1) <
D(γj2‖γi1), ∃i1, i2 ∈ S, ∃ j1, j2 /∈ S}. By Sanov’s theorem,

we can prove that the probability of E1 and E2 decay

exponentially fast.

The error probability in the assignment step can be upper

bounded by the probability of the same event E1, which decays

exponentially fast by Sanov’s theorem.

Moreover, the assignment step in Algorithm 2 can be solved

in linear time O(M) [12], which is independent of T .

The details of the proof can be found in [13].

Comparison of Proposition 1 and Theorem 1 shows that δ
(1)
c2

has a smaller error exponent than that of the GL test in (5) as

M → ∞, but has a linear time complexity.

In the following theorem, we further show that the perfor-

mance of Algorithm 2 will improve with more iterations.

Theorem 2. For each M ≥ 3, when the number of outliers T

is known, the test δ(�)c2 is universally exponentially consistent.
As M → ∞, the achievable error exponent of δ

(�)
c2 in

Algorithm 2 can be lower bounded by

lim
M→∞

α
(
δ
(�)
c2 , {μi}Mi=1, π

)
≥ α

(
δ
(1)
c2 , {μi}Mi=1, π

)
. (9)

Furthermore, the time complexity of the test δ(�)c2 is O(M�).

Proof sketch: It is shown in Theorem 1 and Proposition

1, both the test δ
(1)
c2 and the GL test δGL are exponentially

consistent, and the error exponent of δGL is larger than that

of δ
(1)
c2 , when M → ∞. Since P(δ

(1)
c2 �= S) ≤ P(δ

(1)
c2 �=

S or δGL �= S) ≤ P(δ
(1)
c2 �= S) + P(δGL �= S), we

can conclude that P(δ
(1)
c2 �= S or δGL �= S) also decays

exponentially fast with the same error exponent of δ
(1)
c2 , which

means that δGL and δ
(1)
c2 both output the same correct S with

high probability. Given that δ
(1)
c2 and δGL have same outcomes,

i.e., the initialization achieves the global optimum of the cost

function, then running � steps will not change the output of

δ
(1)
c2 . Thus, δ

(�)
c2 at least achieves the error exponent of δ

(1)
c2 .

The details of the proof can be found in [13].

B. Unknown Number of Identical Outliers

In this section, we consider the case where the number of

outliers is unknown. Moreover, the typical distributions π are

identical and the outlier distributions μ are identical. Motivated

by the test in (6), we design the following initialization

algorithm to set the clustering centers in Algorithm 1.

Algorithm 3 Clustering with unknown number of outliers

Input: M empirical distributions γ1,. . . , γM defined on

finite alphabet Y .

Output: A set of outliers S.

Initialization:
Choose one distribution γ(0) arbitrarily,

c1 ← argmaxγi
D(γi‖γ(0))

c2 ← γ(0)

Method: Same as in Algorithm 1 with K = 2
Return C1 and C2

It can be seen that, c1 and c2 chosen by the initialization step

in Algorithm 3 are generated by π and μ, with high probability.

Let δc3 denote the test described in Algorithm 3, and δ
(�)
c3

denote the test that runs � iterations in Algorithm 2, where � =
1, 2, . . . is the number of iterations. The following theorem

shows that the clustering based algorithm δ
(�)
c3 , is universally

exponentially consistent, and has time complexity linear in M .

Theorem 3. For each M ≥ 3, when the number of outliers
is unknown, the test δ(�)c3 , which runs � steps of Algorithm 3,
is exponentially consistent, and has time complexity O(M�).

Proof sketch: The exponential consistency of δ
(�)
c3 can

be established using similar techniques to those in Theorem

1 and Theorem 2. The major difference between the proof of

Theorem 1 and Theorem 3 is that there are two clustering cen-

ters in the initialization step and assignment step in Algorithm

3. The details of the proof can be found in [13].

C. Typical and Outlier Distributions Forming Clusters

In this subsection, we consider the case that both the outlier

distributions {μi}i∈S and the typical distributions {πj}j /∈S

are distinct. Moreover, the typical distributions and the outlier
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distributions form clusters as defined in (1), which means that

the divergence within the same cluster is always less than the

divergence between different clusters.

The following theorem shows that under the condition (1),

the one step test δ
(1)
c3 proposed in Algorithm 3 is universally

exponentially consistent, and has time complexity linear in M .

Theorem 4. For each M ≥ 3, when both the outlier distri-
butions {μi}i∈S and the typical distributions {πj}j /∈S form
clusters, i.e. condition (1) holds, the test δ(1)c3 , which runs one
step of Algorithm 3, is universally exponentially consistent,
and has time complexity O(M).

Proof sketch: The exponential consistency of δ
(1)
c3 can be

established using similar techniques as shown in Theorem 3.

The details of the proof can be found in [13].

The GL approach of replacing the true distribution in (2)

by their MLEs leads to identical likelihood estimates for each

hypothesis. Thus, the GL approach is not applicable here. One

could apply the test in (6) to this problem, but it can be shown

(see [13]) that the test in (6) is not universally exponentially

consistent, even if condition (1) holds.

VI. NUMERICAL RESULTS

In this section, we compare the performance of the GL

test δGL, the clustering based tests δc2, δc3 and the one step

tests δ
(1)
c2 , δ

(1)
c3 . We consider the case with identical typical

distribution. We set π to be the uniform distribution with

alphabet size 10, and generate outlier distributions randomly.

We first simulate the case with distinct outliers where T is

known. We choose M = 20, T = 3. In Fig. 1, we plot logPe

as a function of n for δGL, δc2 and δ
(1)
c2 after 5000 times of

Monte Carlo simulations. As we can see from Fig. 1, δ
(1)
c2 and

δc2 are both exponentially consistent, and δc2 outperforms δ
(1)
c2

as shown in Theorem 2. Comparison between δc2 and δGL

shows that without sacrificing much in performance, δc2 is

about 50 times faster than δGL.

We then simulate the case with unknown number of identi-

cal outliers. We set M = 100, T = 10. Fig. 2 shows that δc3
outperforms δ

(1)
c3 . We note that running the clustering based

tests for 5000 times takes 5 minutes on a 3.6 GHz i7 CPU.

However, the GL test is not feasible here, since the number

of hypotheses needs to search over is exponential in M .

We have also simulated the case where both the typical and

outlier distributions form clusters. These results, which are not

reported here due to space limitations, show that the test δ
(1)
c3

is also exponentially consistent.
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